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The growth rate of critical nuclei for a fluid near its critical point is discussed 
on the basis of the stochastic equation for the probability distribution 
function of the local order parameter, which was derived previously by the 
author. The growth rate was found to depend on ~:, the range of correlation 
of the order parameter fluctuation, and R, the radius of critical nuclei, as 
~:~ in conformity with dynamical scaling. The rate of nucleation at the 
liquid-gas transition near the critical point is also discussed on the basis of 
this result. 
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1. I N T R O D U C T I O N  

Recently there has been an increasing a m o u n t  of a t tent ion being paid to 
phenomena  occurring far f rom thermodynamic  equil ibrium. 2 Nuclea t ion  

phenomena  ~2~ and  spinodal  decomposi t ion (3~ are typical examples. These 
phenomena  occurring in fluids in the vicinity of critical points  have certain 

attractive features: Since the length scales involved are at least of  the order 
of  the range of correlations of critical f luctuations ~, and  the time scales 
involved are of the order of ~af(~/R), where R is another  length scale such 
as the radius of a critical nucleus, i4~ a semimacroscopic t rea tment  is quite 

1 Research Institute for Fundamental Physics, Kyoto University, Kyoto, Japan. 
2 See, e.g., a number of the papers in Ref. 1. 
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effective. Indeed, such a treatment of the nucleation rate was recently pre- 
sented by Langer and Turski ~5~ (LT) for the case of small supersaturation 
such that R >> ~: where, however, the growth rate of critical nuclei did not 
obey the dynamic scaling form (4~ ~-3f(~/R). 

On the other hand, we initiated another approach (6~ to this sort of 
problem in deriving a stochastic equation obeyed by the probability distribu- 
tion function of the local order parameter by eliminating in the first place all 
other rapidly varying variables near the critical point, in particular, the local 
transverse velocity, thus ensuring dynamic scaling from the outset. Since 
the growth rate of critical nuclei enters the prefactor in the expression for the 
nucleation rate, (s) here we present a calculation of the growth rate of critical 
nuclei on the basis of this stochastic equation. 

In the next section we derive the macroscopic equation of motion for the 
average local order parameter on the basis of our stochastic dynamic equa- 
tions. ~6) In the subsequent section this macroscopic equation is linearized 
around an unstable steady-state solution with one critical nucleus. The 
linearized equation is then solved employing the method used by LT and the 
growth rate of critical nuclei is obtained as Eq. (31) below. Section 4 is 
devoted to the discussion of the nucleation rate on the basis of (31). 

2. M A C R O S C O P I C  E Q U A T I O N  OF M O T I O N  

Since there is a close parallel between the liquid-gas transition and critical 
mixing, (7~ we treat both cases simultaneously by denoting the local order 
parameter by a(r), meaning the local specific entropy and the local con- 
centration in the respective cases. The stochastic dynamic equation for the 
probability distribution function g((a}, t) derived previously reads 3 

(~/Ot)g({a}, t) = H({a})g({a}, t) (1) 

with 
a*({a))] H({a})--L~ aa(r) J 

f f  a a a(r)a(r,)3_~(r _ r') - d r  d r '  
~a(r-~ Or~ 

- -  kBT ~-~(r, ) + (2) x OrB, ~a(r) J 

where Y~B(r) is the Oseen tensor given by 

~-~ (r )  =- ~ 8~B + r 3 ] (3) 

3 This equation is recast here in a more symmetric form using 
(O/Or~)J-~Z(r) = 0 (1') 
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and ~ is the shear viscosity, which we assume to be constant in this work. 
O#({a}) is the free energy associated with the fluctuation {a} and is related to 
the equilibrium probability distribution ge({a}) through 

ge({a}) = const x exp [-qa({a})/kBT] (4) 

Because of the enormous complexity of Eq. (1) with (2), we do not 
attempt to solve it but will be content with an approximation in which 
g({a}, t) on the right-hand side of (1) is replaced by the local equilibrium 
distribution function gz({a}, t). This approximation is valid whenever one is 
in the "collision-dominated" regime and is the zeroth order approximation 
of the Chapman-Enskog expansion of gas dynamics/8> The method of 
constructing the local equilibrium distribution function has already been 
variously discussed (see e.g., Ref. 9); one applies a field conjugate to the 
gross variables {a} in the equilibrium state so as to bring the average values 
of {a} to their true off-equilibrium values {~}. 

In the Gaussian approximation we then have 

1 (ai -- 6{) 2] 
g,({a}) = ,/V" exp - ~. ~ 

= Jg" exp( 1 ~ c~%5({~}) 2kuT ~ ~ (a~ - 60 s} (5) 

where we have expanded a(r) in terms of a suitable orthogonal set of functions 
r as 

a(r) = ~ a,r (6) 
t 

so that 

((a~ - a,)(aj - 6 j ) ) ,  = X l i 8  u (7) 

and the subscript I stands for the local equilibrium. However, there is a 
difficulty in this procedure in the present problem. The local equilibrium 
state with a critical nucleus cannot be constructed in this manner since 
Xz{ with i = 0 describing the average square of fluctuations of the nucleation 
coordinate ao blows up and a%~({~7))/&io 2 becomes negative. Hence we must 
suppress entirely the fluctuation of ao in the local equilibrium state. Choosing 
the radius of the nucleus as ao and denoting its value by R, we replace (5) by 

( 1 ~'02dP({Et})(ai--Et~)2}8(ao-- R ) (8) 
g~({a}) = JV" exp 2kBT ~ ~gti 2 

where the summation ~i' excludes i = 0. 
The right-hand side of (1) contains a factor 
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If we expand r around {a} -- {6} and terminate at the quadratic terms, 
we immediately have for (9) with i r 0, 

[Sr (10) 

Now, the first term of (9) contributes to fluctuations of ai in the stochastic 
equation (1) and hence it is inconsistent to retain it for i = 0 since we have 
ignored fluctuation of ao entirely. Thus if we ignore the first term of (9) for 
i = 0, we see that (9) can be replaced by (10) for all i. In other words, we 
are allowed to make the following replacement in (1): 

[ 3@(r~ 3r . . . .  8r c - - , - , k B  T + ~ ]gMaD ---> ~ gi({a}) (11) 

With this preparation, we immediately find the macroscopic equation 
describing the time evolution of ~7(r) by multiplying both sides of (1) by 
a(r) and by performing a functional integration over {a} as follows: 

c~(r) -- L~ 2 3r ~ ~ dr' Y ~ ( r  - r') 

[aa(r) aa(r') 82x,(r, r')] 8@((fi}) 
•  ar; + 8~8,~;j sae') (12) 

where we have suppressed the argument t in d(r, t) and 

x,(r, r') - ~ '  X,,r162 (13) 

is the correlation of fluctuations ([a(r) - fi(r)][a(r') - fi(r')])z in the local 
equilibrium state, where the fluctuation of the nucleation coordinate is 
suppressed. 

In this work we adopt the square gradient form for r <5) 

r = f [�89 2 + 4,(a) - ffa] (14) 

where/z plays the role of a chemical potential and K has only a weak critical 
anomaly like ~:~.4 Then (12) reduces to 

8 
8--i ~(r) = L ~ V2[ - K V2a(r) + 4,'(a(r))l 

~ f  , {8~(r) 8d(r') 8%(r, r') 
- dr' J -~ ( r  - r ) ~ 8r~' + 8r~ 8re --------r  

x [ - g  V'2~7(r ') + r (15) 

where the prime on 4' denotes differentiation with respect to its argument. 

4 This ~/should not  be confused with the shear viscosity ~/in (3). This dependence  of  K 
on s was chosen so as to yield a correct  scaling form for ~8 a'(r) 3a'(r ') ) ,  where  
~a'(r) - a(r) - a. 
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3. G R O W T H  R A T E  O F  C R I T I C A L  N U C L E I  

In order to obtain the growth rate of critical nuclei K, we first linearize 
(15) with respect to the deviation 6a(r) of 6(r) from its value a*(r) correspond- 
ing to a critical nucleus. Since ~({a}) is extremum at {a} = {a*}, we find 

K 3a(r) = L ~ V 2 [ - K  V 2 + q~"(a*(r))l 3a(r) 

~ f  r') [Oa*(r) ~3a*(r') ~2xz(r, r') 
- d r ' J - ~ B ( r -  [ ~r~ ~r B' + ~ r ~ r  e' 

+ q~'(a*(r'))] 3a(r')/ (16) X [ -K V'2 

where O[3a( r ) ] / e t  has been replaced by K 3a(r) on the left-hand side. 
If we envisage the same situation as was considered by LT, ~5~ namely a 

single critical nucleus with R >> E and a surface thickness of the droplet of 
the order of ~:, the method employed by LT to solve their hydrodynamic 
equation can be adopted here with slight modifications. First consider the 
region far from the droplet surface where a*(r) is constant. Here (16) is 
nothing but the equation describing the decay of fluctuations occurring in 
thermal equilibrium and we should have 

3a(r) = V ~ ( d r  ' Sr - r ' ) [ - K  V '2 K + 4"(a*)] 3a(r') (17) 
J 

where 

and 

9 2 

5r = L ~ 8(r) + (V 2) -~ ~ ~ J'"~(r)x(r) 
~r~ ~r B 

(i8) 

f, 
L = j ~e(r) dr (19) 

is nothing but the renormalized Onsager kinetic coefficient ~1~ [thermal 
conductivity or concentration conductivity apart from some unimportant 
coefficients; see (36) below]. The sblutions in this region when the critical 
nucleus is centered at r = 0 take the form 

~a(r) = ( A i r )  sinh(qr) inside droplet (20a) 

3a(r) = ( B / r ) e  - q~r- R~ outside droplet (20b) 

Since we expect q~ << 1 and s is nonvanishing only for [r I ~< ~:, we 
have 

~r = L K q 2 [ _ q 2  + ~:-2] (21) 

where we have used the relation valid outside the interface 5 

q~"(a*) = X~ :-2 (22) 

We ignore the difference in ~"(a*) inside and outside of the droplet. 
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then (21) yields 

provided that 

q "~ (K/LK)lJ~( (23) 

(K/LK)I"2~ 2 << 1 (24) 

In the interfacial region we ignore the left-hand side of (16) since K is 
small. We then find that by virtue of the property (1') the solution of (16) 
takes the form 

~a(r) = (C/r )  f dr '  G(r, r ' )  (25) 

where G(r, r ')  is the Green's function of radial coordinates, which satisfies 

[ - K ( d ~ / d r  2) + 4;'(a*)]G(r, r ' )  = ~(r - r ' )  (26) 

Matching the solution (25) to the solutions (20a) and (20b) yields6 

A sinh(qR) = C/~"(al )  (27a) 

B = C/c}'(a2) (27b) 

where al and a2 are the constant values of  the order parameter taken far 
inside and far outside the droplet. We approximate ~"(al) ~- (~"(a2) = K~-2 .  
By making use of the spectral decomposition of G(r, r') where only one term 
with negative eigenvalue is important for r _~ R, we find near the interface 

CR ~ Aa da*(r) (28) 
3a(r) _ 2er dr 

where Aa = al -- a2 and ~ is the "surface tension" given by 

fo =_ K [da*(r)/dr] 2 dr (29) 

Having expressed 3a(r) in terms of K and other supposedly known 
quantities, the final step in determining K is to impose the conservation law 
condition 

f 3a(r) dr = 0 (30) 

implied by (16). Thus, in the approximation ~: << R, we finally obtain 

K = 2(rL/(Aa)2R 3 (31) 

provided that q R  << 1. 

6 Since we closely follow LT up to (31) except for the relationship between • and q, 
we present here only a brief outline of the derivation. 
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The critical behavior of  the growth rate K can be found by noting the 
critical behavior of  various quantities entering (31): 

~ ~:1-(2-~,~/v, (Ref. 1t) (32a) 

L ~ ~/ /v ' - i  (Refs. 4, 7, and 10) (32b) 

Aa ~ ~:-B/v' (Ref. 12) (32c) 

where the critical exponents refer to those in the ordered phase. With the use 
of the scaling law relation ~' + 2/3 + 7' = 2 we find 

K ~ ~:~ (33) 

which is of the dynamical scaling form, as mentioned in Section 1. (4'7'1~ 

Using K ~ ~" and the relation 7' = (2 - ~7)v', the consistency condition of 
(31) is also verified: q R  ~ ( ~ / R )  3/2 << 1. Relations (31) and (33) are the main 
results of  this work. Since we have eliminated other degrees of  freedom than 
the order parameter at the outset, there is no need to consider the thermal 
nonaccommodat ion effects, again in contrast to the Langer-Turski  approach. 

Let us now compare (31) and (33) with the results of  LT. Langer and 
Turski (s~ obtained the following results for the growth rate of a critical 
nucleus for the liquid-gas transition: (i) When the thermal nonaccommoda-  
tion effects are unimportant,  

~: = [ 2 c r n j m R 3 ( A n ) 2 ] i / z  ~ ~ -  (1 -,7>12 R -  3/2 (34) 

(ii) When the thermal nonaccommodat ion effects are very important,  

K = 2 a ~ r T / 1 2 R 3 ( A n )  2 ~ ~ + ~ R  - 3  (35) 

where An = nz - n~, and nz and n~ are the number density of  molecules in 
the vapor and liquid phases, respectively, and ~ and l are the thermal con- 
ductivity and the latent heat per molecule, respectively. Here, in addition to 
(32) we have used h ~ L, An ~ Aa, l ~ Aa, and the scaling law relations 
among critical exponents. (z2> 

We note that the both growth rates (34) and (35) are much greater 
than ours near the critical point because in the Langer-Turski  approach the 
rapidly varying transverse local velocity plays an important role, which has 
been eliminated at the outset in our approach. 

It is interesting to note that the growth rate (31) is the same as that which 
would result from the stochastic equation (1) with (2) if the second term of 
(2) is dropped and L ~ in the first term is replaced by L. This is due to a certain 
insensitivity of  the specific method by LT to solve (16) to the details of  the 
equation. 

4.  R A T E  O F  N U C L E A T I O N  

It  is natural to study the nucleation rate near the critical point on the 
basis of  the growth rate of critical nuclei we have obtained in the preceding 
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section. There are, however, a few problems to be solved before we can do 
this satisfactorily. First, since our starting equation (2) has a rather com- 
plicated form in which the "diffusion constant" also depends quadratically 
on {a}, Langer's formal theory of nucleation <13) cannot be used immediately. 
Second, near the critical point, where the length scales involved tend to 
infinity, the interaction among critical droplets can become important. 
Nevertheless, pending the resolution of these problems, it would still be of 
some interest to discuss the nucleation rate at the liquid-gas transition by 
naively replacing the growth rate of critical nuclei of Langer and Turski by 
ours. 7 

For this purpose let us rewrite (31) for the case of the liquid-gas transi- 
tion where a(r) is n(r), which for the most part exhibits a diffusive behavior 
near the critical point with L given by 

L = (n2xT/pCp)A (36) 

Here Xr is the isothermal compressibility. Substituting (36) into (31) and 
using (35), we obtain the following for the ratio of the growth rates obtained 
here and by LTS: 

(K)LT (~pT)~ (~pT)v  [/-~ ( ~ ) v ] 2 e  2r (37) 

where e - (To - T ) / T c  and we have used with finite l0 

1 ~ I S  (38) 

The critical supercooling for a saturated vapor, STy, corresponding to 
the nucleation rate Ic ,  now becomes 

3T~ = % , [ l n ( V J o / I c )  + r in e - ln(6Tc/Tc)]  -~/2 (39) 

where V is the entire volume of the system. This equation is of the same form 
as that given by LT, where the explicit form of the finite constant r0 is 
given by (7.14) of LT. However, the finite constants Jo and $ are different: 

do = (J~ \~p]vj{OT~ ]2 (40) 

~b = (6)LT + 2/3 (41) 

7 Note that the extra degrees of freedom associated with the velocity field in the Langer- 
Turski theory have no effect on the statistical prefactor and the activation free energy 
as shown by them. 

8 Equation (36) follows from the relations L4," = ,X/pC~ and 4'" = 1/n2x~ ". In obtaining 
(37), we have used Xr/pCr, = T -1 (OT/~p)~@T/~p)v and also (~T/~p)~ ~- (OTl~P)v near 
the critical point. 
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where (Jo)~.T and (~)-T are the values of Jo and q~ given by the LT equations 
(7.22) and (7.21), respectively. In particular, using the values of critical 
exponents listed by LT, we have 

q~ = 9v' - 2/3 - 7" + 1 ~ 4.25 (42) 

In view of the problems mentioned at the beginning of this section, we 
refrain from any further discussion of the nucleation rate at this time. 

5. C O N C L U D I N G  R E M A R K S  

In the preceding sections we exemplified the usefulness of the dynamical 
equations (1) and (2) for the order parameter by calculating the growth rate 
of critical nuclei near the critical point of fluid. This sort of equation naturally 
extends the mode coupling ideas of critical dynamics (~'7'1~ to far-from- 
equilibrium situations. Note, in particular, that near a critical point even a 
very small deviation from thermal equilibrium appears greatly magnified 
and hence the usual linear approximation quite often breaks down. We 
hope to report on these problems, including spinodal decomposition of a 
fluid near a critical point, ~3~ in the near future. 

A D D E N D U M  

After this paper was submitted for publication, Professor J. S. Langer 
communicated to the author an error in the calculation of the thermal 
nonaccommodation effect of LT, and he now obtains the growth rate which 
is quite similar to our Eq. (31). 

Recently we were able to reduce Eqs. (1) and (2) to a simpler stochastic 
equation for the probability distribution function of the nucleation coordinate 
using a local equilibrium approximation. This simpler equation is susceptible 
to analysis by the method of Langer ~1.~ where the growth rate (31) now 
enters in a natural way. 
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